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THE INVERSE PROBLEM OF THE T~~-~~M~~~UNAl THEORY OF ELASTICITY IN 
THE H~R~~YNAMI~ F~RMU~T~~N* 

S.B. VIGDERGAUZ 

The problem of optimizing the form of thin solids in a perfect fluid is 
considered. Its solution is constructed using the hyi?rodynamFc analogy 
noted earlier /1,2/ in the inverse problem of the theory of elasticity, 
and is utilized to compute the attached masses. 

Let a system of n 4Axi.n solids bounded by smooth convex contours r,(l= i,2, . . ..n) move 
through a perfect fluid at a constant unit velocity along the X-axis of a system of Cartesian 
coordinates. The motion is potential, irrotational and the fluid is at rest at infinity. We 
denote by 3 the region occupied by the solids, r = fir, its boundary* ): the region of fluid 

flow Gcmplementing St0 complete the plane, v,the normal to r exterior to S, and by +, $k 

its direction cosines. 
We consider the variational problem of minimizing, by chasing the form of F, the integral 

functional, i.e. the attached mass /3,4/m,of the system in the x-direction 

under isoperimetric constraints. 
fiere ml(x,y) is the fluid velocity potential, harmonic in C ,and decreasing at infinity, 

and p is the fluid density. Henceforth we shall put p = 1. The condition of fluid impermeab- 

ility holds on l' for ml(s, y) 
dcp,idv = --xv (2) 

and we specify the total area of the system 

as the isopeximetric condition. 
If there are no other constraints, the problem has a trivial solution, and the bodies 

degenerate into "needles" stretchedparaUelto the X-axis. We have fox them Q---O, and Eqs. 
(3) are formally satisfied when the length of the needle becomes infinite, for any value of 
A. TO eliminate this solution we must impose additional requirements on the bodies, e.g. 
specify their form at the points of incidence and departure of the flaw, and vary only that 
part of the boundary near the middle CKOSS section /5/. It has been shown that at this part 
the fluid velocity must have a constant value. In the case of flow past a polygon with the 
formation of a cavitational void of prescribed area, this agrees with the result obtained by 
Riabushinskii (see /6/f. If on the other hand the boundary is completely unknown by defini- 
tion, its tatal length can be specified although suchanon-linear condition causes considerable 
difficulties when solving the problem. 

Instead of a straightforward geometrical constraint eliminating the needles, we shall 
specify an attached mass rn,of the system in the direotionofthe Y-axis. Using the obvious 
notation we have 

@m&v=--gy, (5) 

Clearly, m, and E,, the latter representing the characteristic dimension of the system in 
the direction of the x-axis, are related to each other implicitly, and finite values of the 
attached mass have the corresponding finite sizes. The constraint (4) appears to be artificial, 
but in the specific versions of the optimal boundary given below a direct dependence of m,in 
& will be established. Such a formulation is of some practical interest in designing low 

drag aerodynamic and hydrodynamic profiles I'S/. 
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we will solve the variational problem (1) with constraints (31, (41, by constructing the 
extended functional 

.~=ff (s,Y)dxdY+ BfdzdY, f(s,Y)=gra@(p~ +ograd2m2 
.r I9 (6) 

where the constants a, $ are Lagrange multipliers. The expression forthe first variation SJ 
of the functional of type (6) with a moving boundary, is given in /7/. The expression reduces 
to two terms, the Euler equation satisfied identically in Z, and the condition of optimality 
of the boundary 

(v,6r)f- ~~,v)(V~~~ 6r)- (% W'cpa, W + B(v, W-0, 
(7) 

6r=(Sz,&y) ,vcp*= ((Pw cP& Ti= ($$ 9 $--I , i = I,2 

where (a, b) is the scalar product of the vectors a and b. 
Condition (7) must hold for any small variations 62, 8y of the points on the contour in 

Cartesian coordinates. Let us change to the variations 6v,iS in the local system of coord- 
inates at the boundary required (t is the tangent to I' at the given point, s is the length 
of the contour arc, and x~, Y* are the direction cosines of the tangent) 

&V =r.Jix + ydy; 6t=x,6x f y,by (8) 

%=YU s.=- YV 

xv* + y.Ja= 1, 5,2 + ysa= 1 

Then the vector condition (7) becomes equivalent to two scalar conditions 

Taking into account the boundary conditions (2), (51, relations (8) and the invariance 
of the gradient under orthogonal transformations, conditions (9) beoome 

These conditions are satisfied identically if and only if ml, and (pB take the following 

values at the optimal boundary: 

'plk Y) = a.~ + cl, rp, (x, y) = by + dl; z, y E IZl, 2 = 1, 2, . . ., n (11) 

The constants s, b,q,ii~ (r = %,2,..., a) are to be determined later. Substituting (11) into 

(lo), we obtain 
a=aB,as-a=aba-_,$ijpa~-_ 

from which it follows that 

a = b, a =l,j3=b’-1 (12) 

or 
(I =i &-I, a I bep, fi = 0 (13) 

bet us consider the stream function 'fp,(z, y), conjugate to cp,(s, Y). The boundary condi- 
tions for 'p, and the conjugation conditions /4/ 

a% ar, * av, -- -=T,'= * av (14) 

imply that the following relations hold for Ys(x, y) at the boundary sought: 

~*@.Y)=sr~fk, 
a~.(~, U) 
7=---b37; (151 

z,yEF,, 1=1,2 ,..., n 

and hence the relations 

r3Xk #I 
X(r2,Y)=hl--acl> h =(c%ab- a)+; 2, yfzrr 

for ~(2, Y)" ~(2, y)- aiY,(s, y). This implies that x(5, y) takes its constant value on every 

contour l?l. The ft.mction represents the real part of some function holomorphic in x and 
decreasing at infinity. The conditions of solvability of the modified Dirichlet problem /S/ 



imply that x(x, P)E 0 in X; hence h, = cl and ab = 1. 
meters (131, and in the case of (12) it holds when a = 
In both cases Yz(rs y) is proportional to q~r(r,#)= 

The constant b is found from i+ Substituting the 
obtain D n 
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This holds always for the set of para- 
b I 1. Then (12) is equivalent to (13). 

second relation of (11) into (4) we 

my= -bS(ytd,)yvolr=b3yx*dsE=bA 
r I! 

i.e. b is equal to the (given) coefficient pui3/ of the mass attached to the system in the 
y-direction. Then the minimizing coefficient is pt = p@*' and 88% = Axmvml. The result has 
a clear physical meaning. The greater m,, the greater, generally speaking, the dimension 

E X1 and hence the smaller the characteristic trsnsverse size of the System for the given 
Surface area, and hence also the perturbation in the fluid, i.e., 8%. We establish directly 
that in the case of condition (11) the inertial coefficient prP ==a. Thus the coordinate 
axes coincide with the principal directions of the system and its steady motion in the fluid 
is in fact possible /3/. 

The determination of the bounaary reduces in practice to solving the inverse problem of 
potential theory in 2 relative to qr(S, yf, for which we have the Dirichlet condition (II) and 
the Neumann condition (2). The constants ct @= $,2,..., nf are found from the conditions of 
solvability /8/. The boundary found on the strength of this extra information willbeoptimal 
even when instead of bodies in a fluid we consider a system of conductors in a homogeneous 
electrostatic field directed along the A?-axis, and the attached masses are replaced by the 
values of the polarization P,+ P, 191. With this interpretation (11) now becomes the boundary 
condition of the original problem /9f and (2), (5) become the necessary conditionsof optimal- 
ity. Finally, the same conditions appear in the following version of the inverse problem of 
the theory of elasticity, whose solution we shall utilize. 

Let the region z be filled with a homogeneous and isotropic, linearly elastic material 
with shear modulus G. A homogeneous field of tensile stresaes with components a,m, try m. 1s 
defined at infinity, and a constant pressure p at the boundaries of the holes I', (I = 1, 2, . . . . 
n) . It was shown in /lO,ll/ that the first invariant of the stress tensor has a constant 
value at the optimal boundary, furnishing a minimum to the local functional, representing a 
naximum over the region of the Mieses Plasticity criterion /9/. The variational derivation 
of this condition for the potential deformation energy density integral is given in /12/. It 
can be shown that in this case 6 (s,& ~0 also in Z, where a(~,& denotes the relative 
volume expansion /13/ corresponding to the perturbation fieId with displacement contponents 
u(x,~),v(~,~), brought to a uniform state of stress by the holes. Here the conjugate conai- 

Cons (14) hold for u and v,~d~ism~esit~ss~le,us~ng (S), toreducetheboundaryconditions 
on I' of the direct problem written on the inclined areas /13/ in terms of the stress tensor 
comPonents, 

-&I i P)zy==%% -!- r,YV, - (42 t P)~v==%$tv + q/v 
to the form 

u(r, y)";ZGq@ + g,, w= - 2Gq1+; *t YEI'*, l- 1, 2 ,...,n (16) 

from which we find that u (5, &as 'pe (5% I/). v (2, br) = y, (s,y) when (a i-p) (qr i p)-l = b. 
The boundary in problem (16) is found /1,14/ by a conformal mapping of the standard re- 

gion onto the region soughi, using the analogy mentioned above to give examples of f1-s past 
the optimal system of bodies. The determination of R, m, reduces to computing the surface 
area of S from the explicit value given for r. The form of the boundary depends on the geo- 
metry of the standard region and the values of the load Parameters. 

Thus for n=i, an ellipse is given as the optimal shape in fJ./, and we have for it the 
follow$ng well-known results .;a]: m 
is a scale multiplierl. 

z =dPb*,m,= nCW(Ca,Cb are the axes of the ellipge and c 
men p--i, gl+ %=o, we have pS= &= 1, i.e. a system with equal mass- 

es attached in the x and y directions. In the case of Cyclic symmetry its configuration for 
various values of n is given essentially in /14/. 

For two bodies on the X-axis the equations of the boundary of the (right) body have the 
form /l/ (I is a parameter) 
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(F,E are the elliptic and K,E the total integrals of first and second kind, respectively). 
Computing the area /15/ we obtain 

We 
of 

q-+-A=4zCa&.... ql+qe [hlZ + Da + 11 

% =+=4&A *,fP* fhl*+Da-t- 11 

find the relation ccnnectingmpwith 8, just as simply. Taking as k e.g. the 
the bodies at the intersection with the X-axis 

(la) 

(19) 

I one 

we 

&,_z(l)-x@= * (4 -Al) (201 

find that relations (191 and (20) yield the relation sought in terms of the parameters a,. 
The forms of the optimal contcurs for the case in question are given for various values of 

3 
da in /l/. 

When qr=O, the optimal bodies degenerate into plates of 
length C(l--h,) on the X-axis, and (18) and (19) transform 
into the well-known result due to L.I. Sedov /3/. when ql*fr 
we have bodies with small extensions for which computing m, 
and%usually presents difficulties. When pI = 0, the bodies 
become plates perpendicular to theX-axis. As far as we know, 
the latter case has never been studied. 

v $0 
I J# 
i 2 3 

Assuming that the plates are of unit length, we obtain 
from (17) the following value for the scale factor: 

(21) 

where z (cp, k), is the Jacobi Zeta function. The figure shows the relation between (17, (18), 
(21) m, - m&s and z,, the latter denoting the half distance between the plates. 

ed 

1. 
2. 

3. 
4. 

5. 

6. 
7. 
8. 
9. 

10. 

11. 

12. 

13. 
14. 

15. 

Other configurations such as singly and doubly periodic networks of bodies, plates inclin- 
at .an arbitrary angle to the X-axis, etc., can be considered in the ssme manner. 
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